SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY

SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

Course Title:	MECHANICS OF FLUIDS	
Code No.	MCH 225	
	MECHANIC*! ukai 1ING TECHNICIAN	
Semester	FOUR	
Date	JANUARY 1987	
Author	C. RISING	

		New	Revision
APPROVED			
AFFROVED	Chai rperson	Date	

1

- 0 _

MDAR DESCRIPTION

MECHANICS OF FLUIDS Course Name

MCH 225

Course Number

it

PHILOSOPHY/GOALS:

To have the student able to recognize and solve problems in various areas of fluids and associated basic Thermodynamics.

METHOD OF ASSESSMENT (P'lnW mvs)

"A"			
л	Grading wi	10qi(i1	
"R"	Grading wi	1041(11	
	sketch*.:, n	and g	
ייחיי	SAECCII, II	and y	
C	presen \//		
II T II			

TESTSi

- a) There will be a rn^num of one week's notice- for tests.
- b) Tests will be held at intervals throughout the semester
- c) In the event of a student being absent for a test, he/ she will be given an opportunity to write a test of similar content at a time suitable to the teacher.
- d) If a student fails a test, an opportunity will be given to that student to write a make-up test at a time designated by the teacher.
- e) An 80% attendance record is required in order for a student to be eligible to write a make-up test.
- f) The maximum grade that a student will be given for a make-up test will be a "C".

ASSIGNMENTS:

ASSIGNMENTS	
A) All assignments must be handed in for marking on the specified date an! iinie.	
b) Grades for assignmm* ~d in late will be reduced according to thf •ss.	d
<pre>c) Late assignment, ,!ii not icrrpt^' 'r they dre submitted af icr ^{f h}^ vjore bit;, t <u>VA</u> on Liwe have been marked.</pre>	
d) The marking of as $Anp n$ may be on a random basis.	
DISTRIBUTION OF MARKS: Tests 70% Assignments 20% Attitude 10%	
REFERENCE TEXTS:	
Fluid Mechanics Binder Fluid Mechanics Streeter Fluid Mechanics Daugherty & Franzini Hydraulics - King Wilier Joel Basic Engineering *^ermodynamics thermodynamic Tables - Haywood	
TOPICS:	
Principles of Hydrostatic Pressure Fundamentals of Fluid Flow Continuity Equation Berroulli Flow Measurement (Venturi & orifice)	

Pipe Friction Gas Laws

Steam

Combustion